Exercise 56

For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and intercepts.

$$
f(x)=x^{2}-7 x+3
$$

Solution

In order to more easily graph the quadratic function, write it in vertex form by completing the square. The following algebraic identity is necessary.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-7$, which means $B=-\frac{7}{2}$ and $B^{2}=\frac{49}{4}$. Add and subtract $\frac{49}{4}$ from the right side and use the identity.

$$
\begin{aligned}
f(x) & =\left(x^{2}-7 x+\frac{49}{4}\right)+3-\frac{49}{4} \\
& =\left(x+\left(-\frac{7}{2}\right)\right)^{2}-\frac{37}{4} \\
& =\left(x-\frac{7}{2}\right)^{2}-\frac{37}{4}
\end{aligned}
$$

Therefore, the vertex is $\left(\frac{7}{2},-\frac{37}{4}\right)$, and the axis of symmetry is $x=\frac{7}{2}$. To determine the y-intercept, set $x=0$.

$$
f(0)=\left(0-\frac{7}{2}\right)^{2}-\frac{37}{4}=\left(\frac{49}{4}\right)-\frac{37}{4}=\frac{12}{4}=3
$$

Therefore, the y-intercept is $(0,3)$. To get the x-intercept, set $y=0$ and solve the equation for x.

$$
\begin{gathered}
0=\left(x-\frac{7}{2}\right)^{2}-\frac{37}{4} \\
\frac{37}{4}=\left(x-\frac{7}{2}\right)^{2}
\end{gathered}
$$

Take the square root of both sides.

$$
\sqrt{\frac{37}{4}}=\sqrt{\left(x-\frac{7}{2}\right)^{2}}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x-\frac{7}{2}$.

$$
\left|x-\frac{7}{2}\right|=\frac{\sqrt{37}}{2}
$$

Remove the absolute value sign by placing \pm on the opposite side.

$$
x-\frac{7}{2}= \pm \frac{\sqrt{37}}{2}
$$

Add $7 / 2$ to both sides.

$$
x=\frac{7}{2} \pm \frac{\sqrt{37}}{2}
$$

This means $x=\left\{\frac{7-\sqrt{37}}{2}, \frac{7+\sqrt{37}}{2}\right\}$, and the x-intercepts are $\left(\frac{7-\sqrt{37}}{2}, 0\right)$ and $\left(\frac{7+\sqrt{37}}{2}, 0\right)$. A graph of the function is shown below.

